Step of Proof: bool_sq
12,41
postcript
pdf
Inference at
*
1
1
1
1
I
of proof for Lemma
bool
sq
:
1.
x
: ?Unit
2.
y
: ?Unit
3.
x
=
y
4. case
x
of inl(
x
) =>
x
| inr(
x
) =>
x
= case
y
of inl(
x
) =>
x
| inr(
x
) =>
x
5. case
x
of inl(
x
) => True | inr(
x
) => False = case
y
of inl(
x
) => True | inr(
x
) => False
6. True = False
False
latex
by ((RevHypSubst (-1) 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
True
,
origin